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ABSTRACT We present an approach for the reconstruction of textured 3D meshes of human heads from
one or few views. Since such few-shot reconstruction is underconstrained, it requires prior knowledge
which is hard to impose on traditional 3D reconstruction algorithms. In this work, we rely on the recently
introduced 3D representation – neural implicit functions – which, being based on neural networks, allows
to naturally learn priors about human heads from data, and is directly convertible to textured mesh. Namely,
we extend NeuS, a state-of-the-art neural implicit function formulation, to represent multiple objects of a
class (human heads in our case) simultaneously. The underlying neural net architecture is designed to learn
the commonalities among these objects and to generalize to unseen ones. Our model is trained on just a
hundred smartphone videos and does not require any scanned 3D data. Afterwards, the model can t novel
heads in the few-shot or one-shot modes with good results.

INDEX TERMS 3D portraits, 3D reconstruction, few-shot, head reconstruction, meta-learning, neural
implicit functions.

I. INTRODUCTION
We consider the task of 3D portraiture, i.e. automatic
acquisition of 3D models of human heads that capture both
the geometry and the texture. This automation avoids costly
and time-consuming processes of manual creation of such
models. While there is a number of approaches to modeling
2D head appearance [1], [2], [3], here we consider 3D head
modeling as an important task that nds applications in lm-
making, AR, VR, XR, gaming industries. While a number
of learning-based methods for this task have been suggested
[4], [5], most of these methods require 3D scans or synthetic
data for learning. Here, we propose an alternative approach
that learns to model human head shape and appearance
directly from a collection of RGB videos.

Our approach is based on a recent class of methods that
use implicit representations for shape and appearance such
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as the recently introduced NeuS method [6] and very related
approaches introduced in parallel with NeuS [7], [8], [9].
We introduce new and simple way to t such models to indi-
vidual videos, while sharing a subset parameters, resulting in
the approach that we call Multi-NeuS.

We show that sharing the parameters across training videos
facilitates knowledge transfer to new individuals unseen dur-
ing training. As a result, Multi-NeuS achieves noteworthy
data-efciency (capable of learning a generic human head
model from the videos of as little as 103 individuals) and is
fast to train (takes only 24 hours on a single V100GPU). After
training, Multi-NeuS can create convincing textured 3D head
meshes from as little as a single photograph (Figure 1).

Within this work, we investigate two parameter sharing
patterns and sharing-related regularizations that can be used
within Multi-NeuS. These are (1) sharing the parameters of
layer subsets, as well as more sophisticated (2) low-rank
regularization on non-shared parameters. We assess the effect
of the sharing setting on the quality of the results.
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FIGURE 1. Multi-NeuS can reconstruct a realistic textured 3D mesh of a head from a single in-the-wild photo or painting despite significant domain gap
with our training data and the small number of identities in the training set.

Overall, in the experiments we show that our system
is capable of creating high-quality 3D portraits from few
photographs, and reasonably good portraits from single
in-the-wild photographs. More generally, our approach pro-
poses a new way to do transfer learning within implicit shape
and appearance modeling frameworks, and we hope that our
ndings will boost future meta-learning research involving
implicit functions. To sum up, our contributions are:

• We introduce a new type of 3D neural implicit architec-
ture that can efciently t to many objects of the same
class simultaneously and recover their surfaces, given
sets of multi-view photos.

• We devise a meta-learning pipeline for the above model
that enables it to reconstruct the textured 3D surface of
an unseen object from one or few images.

• We demonstrate that our system can be applied to single-
view reconstruction of 3D full head portraits, producing
convincing 3D meshes from in-the-wild images after
being trained on just a hundred short smartphone videos.

II. RELATED WORK
A. NEURAL IMPLICIT 3D RECONSTRUCTION
Neural implicit functions have attracted a lot of attention
recently, notably as aexible approach to represent 3D scenes
with neural networks. Contrary to traditional explicit 3D
representations such as meshes, they are not limited to a
xed resolution or topology, and, most importantly to us,
can naturally employ the power of modern neural network
methods.

Neural radiance elds (NeRF) [10] and its extensions
(e.g. [11]) model density and emitted radiance with neural
nets which are trained via backpropagating through volumet-
ric ray casting. Although NeRF achieves impressive results
in novel view synthesis, it is not designed for reconstructing
geometry: meshes directly obtained from NeRF density func-
tions are often full of artifacts [7].

A more ‘‘geometry-friendly’’ implicit approach is to
model the object surface as a zero-level set of implic-
itly dened occupancy [12] or signed distance function
(SDF) [13], [14], which goes back to the classical works

on level set reconstruction [15]. The isosurface can then
be easily converted to a mesh via marching cubes [16].
To train such models without 3D supervision, several authors
have done inverse rendering by modeling color or radiance
similar to NeRF and then applying some kind of ray march-
ing [6], [7], [8], [9], [17], [18]. From these single-scene
multi-view methods, we pick NeuS [6] as a base of our
multi-scene few-view method due to simplicity and code
availability. We revisit NeuS in more detail in Section III-A.

B. META-LEARNING NEURAL IMPLICITS
The meta-learning paradigm addresses (among other things)
the few-shot problem when given several training exam-
ples the network aims to achieve better performance. The
most common line of approaches is the optimization-based
approaches [19], [20] that learn the best weight initializa-
tion. For a deeper meta-learning review we refer the reader
to [21]. Regarding the application of meta-learning to neural
implicits, MetaSDF [22] exploits this idea to learn the ini-
tialization of the SDF network, while the work [23] applies
meta-learning to a wider variety of signal types. Our work
concentrates on human body representation and uses shared
network layers across different tasks (with different people
identities).

C. FEW- OR SINGLE-VIEW HEAD RECONSTRUCTION
Historically, directly tting statistical 3D Morphable Mod-
els (3DMMs) to an image has been a popular method
to recover the 3D head shape [24], [25], [26], [27], but
3DMMs are limited to coarse shape estimation, requiring
separate steps of reconstructing e.g. wrinkles [25] or hair [28].
In addition, 3DMMs are constructed from 3D scans which
might be hard to obtain for many classes. Other more
descriptive and exible 3D representations include depth
maps [29], [30], [31], regular meshes [32], [33], and volu-
metric grids [34], although many of these approaches still
rely on 3DMM in their intermediate steps. Two rare exam-
ples of completely model-free methods that also reconstruct
hair [31], [32] are self-supervised GANs [1] that learn from
unlabeled collections of images. However, actual tting to
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unseen images (e.g. GAN inversion) was not demonstrated.
More information on face/head reconstruction before the
advent of 3D neural implicit methods is available in recent
comprehensive surveys [35], [36].

Recently, several works have successfully applied neural
implicit representations to the head reconstruction task, but
most of them either do not reconstruct geometry directly
(e.g. because of ill-suited NeRF representation) or require
complex datasets. Portrait-NeRF [37] is an early attempt of
meta-learning a single-view NeRF. The support of only slight
viewpoint changes has been demonstrated for this method.
The i3DMM method [38] introduced the rst 3DMM to
include hair. This method is based on SDFs and is constructed
from about 2000 3D scans of 64 people. H3D-Net [4] meta-
learns high-quality SDF representation of full static heads and
supports reconstruction from as few as three posed images
(though feeding just one image is also possible). The method
is trained on a private dataset of 10,000 structured-light 3D
scans. HeadNeRF [39] yields controllable NeRF portraits
conditioned on latent 3DMM vectors (identity, expression,
albedo, and illumination). It is a fully supervised approach,
and authors were able to train it in reasonable time thanks
to a strategy that improves rendering performance [40].
The authors of EG3D [41] went even further and trained a
StyleGAN2 [1] to yield volume-renderable 3D heads with
very little supervision (a similar idea was proposed in Vol-
umeGAN [42] simultaneously). Like HeadNeRF, EG3D can
t an arbitrary head photo by optimizing the latent vector(s).
Moreover, their paper demonstrates extractingmeshes of con-
vincing quality. Still, this method is computationally 80×
more expensive to train than Multi-NeuS, and it does not
reconstruct parts of the head that are further from the face
due to the lack of dedicated background modeling.

III. METHOD
A. RECAP: NeuS RECONSTRUCTION
As our method builds upon NeuS [6], we start with the review
of this method. NeuS is a modication of NeRF [10] for non-
transparent objects. It models the object surface directly, thus
allowing 3D surface reconstruction from images using differ-
entiable neural rendering. Specically, the object surface in
NeuS is represented as the zero-level set of a signed distance
function


x  R3 | SDF(x) = 0


, where SDF is dened as

signed distance to object surface and is modeled by a neu-
ral network. In addition, RGB radiance at any 3D point is
modeled by another neural net, and density is modeled as a
bell-shaped function of SDF that attains its maximum at zero,
i.e. at the object surface. More specically (see Figure 2),
the SDF network is a simple multi-layer perceptron (MLP)
with 8 hidden layers of 256 neurons and softplus activations
(β = 100), and the radiance network is anMLPwith 4 hidden
layers of 256 neurons and ReLU activations. The former
network takes a 3D coordinate and outputs an SDF value and
a latent vector. Meanwhile, the latter network takes this latent
vector, the 3D coordinate, the camera view direction, and the

gradient of the SDF, and outputs the RGB radiance value.
Positional encodings [10] are applied to 3D coordinates
(6 dimensions) and view directions (4 dimensions).

The radiance and density of points sampled along the rays
corresponding to pixels of input images are used to run dif-
ferentiable volume rendering [10] that integrates the samples
along the ray and outputs its RGB color. The optimization
algorithm forces the RGB results of ray integration to be
similar to the corresponding known pixel intensities by pro-
gressively tuning the weights of neural networks. The loss
function to optimize is a simple pixelwise mean squared error
combined with an eikonal regularization term that ensures
∥SDF(x)∥ = 1. After convergence, it is possible to obtain
object mesh via marching cubes [16] over SDF(x), as well
as to synthesize novel views by volume rendering or any ray
marching algorithm, such as sphere tracing.

The multi-view captures may include distant background
which is difcult to represent by the above neural nets.
Therefore, the object of interest is considered to be within a
unit sphere, and everything outside of that sphere is modeled
by a separate dedicated NeRF with the special parametriza-
tion of coordinates [43]. To optimize this NeRF along with
NeuS, extra ray points are sampled outside of the unit sphere.
A sufciently large dataset lets such tandem to disentangle
background from the central object automatically, without
mask supervision.

NeuS achieves excellent results when applied to sets con-
taining dozens of images. Our goal is to create a NeuS-based
system that can perform reconstruction given a single image
or very few images. This scenario is too under-constrained
for the original NeuS and will result in poor convergence.
To alleviate this, we narrow down the class of potential scenes
to human heads and pre-train our model on a dataset of mul-
tiple people, while facilitating knowledge transfer to unseen
people as discussed below.

B. MULTI-NeuS
Our solution called Multi-NeuS is depicted in Figure 2.
We upgrade NeuS so that it can t to N scenes simultane-
ously. Our high-level idea is simple. We create N copies of
scene-specic NeuS instances that share some of the layers,
while keeping other layers unshared (scene-specic).We then
t these N instances to the scenes simultaneously, while
optionally imposing additional structural regularization on
scene-specic layers.

Naturally, we expect that during such tting shared layers
will tend to model features useful to represent any object,
while scene-specic layers combine, rene and augment
the output of shared layers to model a specic object. For
instance, a shared layer might model rough basic human head
shapes, while the following (scene-specic) layer may learn
the weights with which to combine those shapes, like in linear
blend skinning models.

We experiment with two architectures for scene-specic
layers that are described below in Section III-C. As shown in
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FIGURE 2. Architecture of Multi-NeuS, a 3D neural implicit function that can represent multiple objects of a class simultaneously (boxes depict
fully connected layers and their output dimensionalities; γ is the positional encoding function). Since some layers (blue) are shared between all
scenes, they can learn class priors to then transfer knowledge to novel scenes of the same class, enabling few-shot reconstruction. The model is
trained via volumetric rendering and simple pixelwise loss, just like NeuS [6], but on a dataset of multiple scenes. Afterwards, when fitting to an
unseen object, scene-specific layers (yellow, Section III-C) are fitted first, and finally all layers are fine-tuned together.

FIGURE 3. The two architectures of scene-specific layers explored in our
paper, independent (a) and low-rank (b). They are fully connected layers
whose weights and biases w


i

depend on scene index i .

An independent layer learns individual weights and biases for each of N
scenes, while a low-rank layer learns r copies and then linearly combines
them with each scene’s own learnable coefficients.

Figure 2, we use scene-specic layers in the rst halves of
the SDF network and the radiance network, while sharing all
other layers. This choice is evaluated in Section IV-D.

Differently from NeuS, Multi-NeuS learns N independent
scene-specic instances of background NeRFs. Also, we do
not model view-dependent effects in our architecture, effec-
tively assuming that human heads do not produce specular
reections. We nd that on our dataset (which is captured in
scattered light), this does not hurt validation performance but
signicantly reduces overtting in few-shot mode especially
when generalizing to new lighting.

C. SCENE-SPECIFIC LAYERS
We use the scene (person) index i  1,N to enumerate
scene-specic layer instances. Thus, by considering differ-
ent instances within scene-specic layers, the same net-
work architecture models every object in the dataset. In this
work, we experiment with two architecture choices for

scene-specic layers (Figure 3), which we term independent
and low-rank. They are described below.

1) INDEPENDENT LAYERS
(Figure 3, a). This is a straightforward implementation where
the scene-specic layer has a dedicated set of weights and
biases w1, . . . ,wN for each scene. This architecture has large
representational power but has signicant drawbacks.

First, during meta-learning, each wi receives infrequent
weight updates during learning. Thus, if a training minibatch
includes pixels from few (m ≪ N ) scenes, then sub-layers
corresponding to all other scenes do not receive any weight
updates. Alternatively, a minibatch can be composed of ran-
dom pixels from the entire dataset (m ≈ N ). In this case,
however, wi’s gradients become too noisy, coming from just
few (≈ N

m ) pixels, again leading to slow/poor convergence.
In practice, batching together pixels from many scenes is

inefcient as it requires to run m ≈ N layers in each forward
pass, so in our experiments we set m = 1, i.e. we sample all
pixels of a minibatch from just one scene. We therefore use
the Adam [44] optimizer but update moment statistics for a
scene-specic layer only when the corresponding scene par-
ticipates in the forward pass (known as ‘‘sparse/lazy Adam’’).

Another related problem with independent layers is over-
tting due to the excessive number of parameters. This often
leads to poor generalization to new subjects. Our second
architecture below is designed to alleviate this by a built-in
regularization.

2) LOW-RANK LAYERS
(Figure 3, b). In this scheme, scene-specic layer’s weights
and biases w (i)  Rp are not learnt directly. Instead, they are
computed as a linear combination of rbasisvectorsb1, . . . , br :

w (i) =
r

j=1

cijbj , (1)
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where r is the layer’s rank. We learn both the basis vectors
bj  Rp and the linear combination coefcients cij  R,
where i  1,N and j  1, r . Thus, each scene-specic layer
learns a single set of r basis vectors for the entire training
dataset containing multiple scenes, and these vectors are
recombined with different weights to model different scenes,
therefore a separate set of r coefcients is learned for each
of the N scenes. Such low-rank factorization decreases the
number of parameters signicantly (by a factor of several
hundreds in our experiments), reducing overtting.

D. TRAINING
Multi-NeuS is applied in two stages: meta-learning andtting
(see Figure 4).

In the initial meta-learning stage, we pre-train the whole
architecture using the same volumetric rendering procedure
as in NeuS (Section III-A) but on a dataset of multi-view
RGB images of N scenes rather than a single scene. At every
optimization step, a minibatch of camera rays (or, equiva-
lently, image pixels) is sampled uniformly from eight random
images of one random scene. Eventually, Multi-NeuS esti-
mates the 3D shape and texture of every scene (subject) in
the dataset.

After meta-learning, we can t to new scenes starting
from the pre-trained initialization. This ftting stage is thus
conducted to estimate the 3D shape and the texture of a
novel unseen object. To represent that object, we add the new
(N + 1)-st scene to the model, that is, the (N + 1)-st set
of scene-specic layers, initialized as described below. This
time, we are given images of the new subject (can be as few
as one or two), their estimated camera parameters, and their
background segmentation masks.

The tting process is performed in two steps: we rst
retrain the scene-specic weights and then we ne-tune all
weights to the new scene. The rst step begins with initial-
izing scene-specic weights. We do it by simply averaging
these weights over N scenes so that the (N + 1)-st repre-
sentation in Multi-NeuS essentially represents ‘‘the average
object in the dataset’’ as learned by the scene-specic layers.
That is, for independent layer we set wN+1 = 1

N

N
i=1 wi,

and for the low-rank layer cN+1 = 1
N

N
i=1 ci. Note that

in the low-rank layer the basis weights b1, . . . , br are not
scene-specic but are in fact shared by all scenes. Therefore,
we do not optimize or reset them in the rst step of the tting
process. After optimizing the newly initialized scene-specic
weights in the rst step, in the second step we ‘‘unfreeze’’ the
shared weights and optimize all weights while using a smaller
learning rate.

The optimization during the tting stage is performed in
the same way as in the meta-learning stage with two notable
differences. Firstly, instead of using a dedicated background
NeRF [6], we explicitly estimate background masks and
optimize an additional loss that forces the SDF isosurface to
match these masks. The loss used in this case is the binary
cross-entropy between the accumulated density over a ray and

the foreground mask value (1 if object, 0 if background). This
is needed since we found that background separation in the
original NeuS works unsatisfactory in the few-shot regime.

The second modication is ne-tuning the camera param-
eters. This is needed because camera estimates can be inac-
curate, especially for in-the-wild images from the Internet.
To compensate for that, we backpropagate the losses into the
camera parameters and optimize them alongside the neural
networks with a 10× smaller learning rate.

Please refer to Section IV-E for additional details, includ-
ing the implementation details and the hyperparameters.

IV. EXPERIMENTS
A. DATASETS
Our training (meta-learning) dataset is a subset of Smart-
Portraits [45]. It consists of 107 short (≈ 25 seconds) smart-
phone videos of still people with neutral pose and facial
expression. Four of these (two female and two male sub-
jects) serve as the validation set. In each video, the distance
to the head (≈ 1.5 m) and the elevation are roughly con-
stant, while the azimuth travels within ±45◦. From each
video, we remove frames with ash and randomly pick
about 77 frames from the rest, shrinking the entire dataset
to 8256 images. We obtain camera parameters by running
the COLMAP structure-from-motion software [46] on these
images. Finally, these images are loosely cropped to head and
shoulders using a face detector. Note that we do not use any
motion or depth information in our system.

Because Multi-NeuS takes in the absolute 3D coordinates,
all scenes are aligned against each other to minimize the rel-
ative difference between objects. This helps our network not
to spend capacity on modeling translations and scaling, and
thus to t the training set easier. We accomplish approximate
alignment as follows. For each scene, we detect six promi-
nent facial landmarks in images [47]. We then triangulate
the 2D landmarks to get their 3D coordinates. We choose
the the rst scene of SmartPortraits as a reference one. For
all other scenes we compute an optimal similarity trans-
form T [48] that aligns two set of points: the triangulated 3D
landmarks with the reference ones. It is achieved by nding
the optimal translation, rotation and scaling by minimizing
the root-mean-square deviation of the point pairs. Finally, the
transform T is applied to all camera poses of the current
scene. We estimate and apply such similarity transform not
only for SmartPortraits but for every scene of every dataset
used in this work.

We also validate on the H3DS dataset [4], which consists
of ten individuals. For each individual, the dataset offers a
full head 3D scan (mesh) alongside with 60 to 70 360◦ photos
taken with varying lighting, and camera parameters for these
photos.

Besides, we provide qualitative results on several paint-
ings and in-the-wild photos found on the Web. To that end,
we estimate camera parameters for a single photo as fol-
lows. We detect the same six landmarks as above, but this
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FIGURE 4. The training stages of Multi-NeuS (Section III-D). Row 1: the entire model, including scene-specific layers,
is optimized to represent N scenes. Row 2: to fit to a novel (‘‘(N + 1)-st’’) scene, scene-specific layers are re-initialized by the
aggregation over the weight values over N scenes. Row 3: scene-specific layers only are optimized for the novel person (based
on as few as one or two images). Row 4: all layers are optimized with a smaller learning rate.

FIGURE 5. Single-view mesh reconstruction on the first four scenes of the H3DS dataset. H3D-Net [4], a method related to ours, was designed for
three-view reconstruction but can also be evaluated in the one-shot mode. The H3D-Net system was trained on 10,000 3D scans from the same
distribution as these test examples. Our method is trained on a hundred smartphone videos and still matches the quality of H3D-Net, while
demonstrating somewhat smaller identity gap and less pronounced regression-to-mean effect.

time obtain their approximate 3D coordinates in orthographic
camera coordinate system ( [47] provides them directly).
We assume that these coordinates are 3D world coordinates,
and that the image was taken with a telephoto lens with the
vertical eld of view of ≈ 10◦. These asssumptions allow
us to roughly recover the camera pose in world coordinates,
namely via an algorithm for the Perspective-n-Point (PnP)
problem [49].

When tting to any unseen pictures, we estimate back-
groundmasks using an off-the-shelf model [50] andmanually
rene them.

B. SINGLE-VIEW GEOMETRY RECONSTRUCTION
By providing ground truth 3D scans, H3DS permits a quan-
titative comparison of geometry reconstruction, so we use it
to compare against H3D-Net [4], which was tailored for this
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TABLE 1. Mesh reconstruction error in millimeters on H3DS dataset.
Lower is better, ‘‘F/L/R’’ are for ‘‘frontal/left/right’’. See Section IV-B for
details.

FIGURE 6. Quality of novel view reconstruction depending on
scene-specific layer type (Section III-C), measured on our validation
subset of SmartPortraits. Lower rank metamodels have fewer degrees of
freedom and underfit during the first step of fitting; higher rank models
fit better and provide a more convenient initialization for the second step
of fitting (fine-tuning of all weights).

dataset. Although H3D-Net was demonstrated to reconstruct
from three or more views, it can t to a single view as well,
and it has an advantage on the H3DS dataset since this model
was trained on a large dataset (10,000 scenes) from the same
distribution.

The target metrics, as in [4], are unidirectional Cham-
fer distances in millimeters from the predicted mesh to the
ground truth, computed after rigid alignment via ICP [51].
One metric is the distance computed over facial area only,
and the other one is computed over the entire ground truth
mesh of a head.

We compute 1-view metrics by reconstructing from left,
right (azimuth≈ 45◦), and frontal views.We do not apply our
method in few-shot setting on H3DS because images in this
dataset are taken with varying lighting and exposure, lacking
multi-view consistency required for Multi-NeuS.

We compare our best model (low-rank architecture,
r = 1000; evaluated in Section IV-C) with H3D-Net in
Table 1 and Figure 5. Our method practically matches H3D-
Net in reconstruction accuracy while learning from a different
dataset that has 100× fewer identities and does not require 3D
scanning. Furthermore, rendered samples suggest that H3D
samples look very similar to each other, especially outside
of the face region (the so-called regression-to-mean effect)
while our model predicts more ‘‘personalized’’ shapes.

To demonstrate additional single-view geometry recon-
struction, we show several reconstructions of in-the-wild
photographs and paintings in Figure 7 and in the supplemen-
tary video.

C. EFFECT OF NUMBER OF VIEWS AND LAYER TYPE
Although our primary aim is to reconstruct heads given just
one image, our method naturally benets from additional
views. We demonstrate this on the validation subset of Smart-
Portraits. Similarly to H3DS, we restrict the scenes to the
views: left, right (with azimuths around ±45◦) and frontal.
Since 3D ground truth is not available in this case, we render
two additional control views (±20◦) and compute masked
PSNR against the ground truth images corresponding to these
two views (control images). These are in turn averaged over
four validation scenes.

We observe that duringtting to a novel person, optimizing
camera parameters provides additional degrees of freedom.
This often leads to the person’s shape in Multi-NeuS drifting
away from its ‘‘canonical’’ position (Section IV-A) and inat-
ing the validation error, even when the reconstruction is good.
Moreover, the two control cameras might be estimated inac-
curately during data pre-processing. To address this, before
reporting PSNR against control images, we rene the control
cameras’ poses and focal distances by optimizing for PSNR.

Figure 6 compares how faithfully the novel views are
reconstructed depending on the number of input views (one,
two, or three) and depending on the layer type (independent
or low-rank). In the case of a single input view, the metric
is averaged over reconstructions from left, right, and frontal
views. In the two views case, we take the left+right views as
input.

Consider low-rank models. Clearly, at the rst step of
tting (Figure 6, left), when only linear combination coef-
cients cN+1 and camera parameters are optimized, the models
undert in the case of low ranks. When the rank is very
high (2000), the models start to overt since the number of
parameters becomes excessive. This is additionally illustrated
in Figure 8.

In all cases, the second step of tting (Figure 6, right)
where all parameters are ne-tuned is necessary because
low-rank coefcients have few degrees of freedom. Multi-
NeuS without the second step thus underts the input views.
However, in the few-shot setting, optimizing the full network
can lead to severe overtting. So the primary goal of the rst
tting step is to provide a good initialization for this second
step. According to the diagram, models with a reasonably
high rank (e.g. 1000) provide best initializations, but this
comes at a cost of overtting during ne-tuning which may
even decrease the overall PSNR by distorting the unseen areas
of the resulting shape. This is probably because high rank
scene-specic layers gain too much representational power
and the shared layers are not forced as hard to learn univer-
sal features, thus hampering generalization. An alternative
interpretation is that since we spend the same number of
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FIGURE 7. Additional results for 3D reconstruction of in-the-wild photographs and paintings. Our method is able to handle different hair styles and
performs reasonably well for images that are different from the training SmartPortraits dataset. Note the back may have artifacts because this part of
the head is mostly absent in the training dataset due to very limited view angles.

FIGURE 8. The first (coarse) step of fitting (i.e. shared layers frozen) for various architectures of scene-specific layers. The scene is a subject from the
validation subset of SmartPortraits. The amount of overfitting can be traced by looking at the right cheek and ear, which are invisible in the source view.
The independent architecture with overparametrized scene-specific layers overfits already at this fitting stage. The low-rank variants become better at
fitting these hidden parts with increasing ranks and model the texture better, but at some point (r = 2000 in this case) get too many degrees of freedom
and start to overfit. r = 1000 provides optimal reconstruction in this case (and on average).

ne-tuning iterations regardless of rank, early stopping might
alleviate some overtting issues.

Another obvious observation is that with more views the
effect of overtting decreases, and the advantage of higher-
rank models becomes less pronounced (e.g. a 50-rank model
already does well for the three-view reconstruction). In addi-
tion, the change in the number of views allows to assess the
capacity of scene-specic layers.

The model with independent scene-specic layers does not
generalize well because of the excessive capacity. Although
it demonstrates larger PSNR than 50- and 150-rank models,
it does so because its scene-specic layers are usual linear
layers which can t the training view really well, while low-
rank models undert. At the same time, the unseen parts in
the validation views already get distorted in the rst step and
this is why the second step (ne-tuning) does not improve the
score in this case.

Finally, to prove the necessity of shared architectures and
meta-learning, we compare to a simple baseline (Figure 6,
extreme right) where a vanilla NeuS (without view direc-
tions) is trained on a scene from SmartPortraits and is then

TABLE 2. Novel view reconstruction quality depending on the choice of
layers to replace with their scene-specific variants. We test the
performance on the validations scenes from SmartPortraits and report
PSNR values (in dB) averaged across holdout views. Boxes depict
sequential fully-connected layers — like in NeuS, there are 9 layers that
predict SDF, followed by 5 layers that predict radiance.  means
scene-specific layer,  means shared, i.e. vanilla linear layer. Layer type is
low-rank, r = 1000.

ne-tuned (transfer-learned) in a few-shot scenario to the
target scene. This is essentially equivalent to Multi-NeuS
with N = 1, i.e. with a pre-training dataset of 1 scene.
The score for this baseline was computed by transferring from
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4 different SmartPortraits training scenes (2 male, 2 female)
and averaging the metric. Although NeuS typically ts better
to a single scene than Multi-NeuS to any of its meta-learning
scenes, its few-shot generalization ability is clearly lower
compared to any version of Multi-NeuS.

D. WHICH LAYERS TO MAKE SCENE-SPECIFIC
In this subsection, we evaluate the exact choice to put scene-
specic layers into the rst halves of the SDF network and
the radiance network of vanilla NeuS.

Some possible choices are listed in Table 2 and are evalu-
ated for low-rank shared layers with r = 1000. Putting the
scene-specic layers to the radiance network only results
in a constant SDF in the rst stage of tting. This results
in very low metrics. Results for other sharing patterns are
harder to interpret, but arguably good performance requires
sufcient number of scene-specic layers (having too few
of them is detrimental). Furthermore, at least some of these
layers should be among the early processing layers.

E. IMPLEMENTATION DETAILS AND HYPERPARAMETERS
In both meta-learning and tting, we use minibatches of
512 rays. In our experiments, there are 610,000 optimiza-
tion iterations during meta-learning, 12,000 iterations in the
rst stage of ne-tuning and 13,000 in the second stage of
ne-tuning. Pre-training (meta-learning) Multi-NeuS takes
around 24 hours and tting it to a novel subject takes about
an hour on a single NVIDIA V100 GPU. The learning rate
is 1.8 · 10−4 in meta-learning, 4 · 10−4 in the rst step of
tting and 6·10−5 in the second step.Wemultiply the learning
rate by 0.316 every time the loss stops decreasing (known as
‘‘reduce-on-plateau schedule’’). All other hyperparameters,
including the number of ray sampling steps, eikonal loss
weight, weight initialization (including that in the tting
stage) are kept the same as in NeuS [6] (and NeRF++ [43]
for the background model).

We optimize camera parameters similar to [52]. Speci-
cally, we (1) multiply initial camera rotation matrix by opti-
mizable update matrix parametrized using so(3) Lie algebra,
(2) add a optimizable residual to the translation parameters,
and (3) multiply focal length by an optimizable scalar.

V. DISCUSSION
We have presented Multi-NeuS – an approach for one- and
few-shot 3D head portrait reconstruction. The approach can
reconstruct head portraits in the form of surface mesh and
texture. To enable the few-shot capability, we propose and
validate a very simple idea of taking a scene-specic deep
architecture (NeuS) and tting it to multiple scenes, while
sharing some parameters across scenes. We show that despite
simplicity, this idea is sufcient to accomplish knowledge
transfer from the training scenes to previously unseen test
scenes. We believe that this general idea might be appli-
cable beyond head portrait reconstruction to other classes
(e.g. full-body reconstruction) and architectures (e.g. differ-
ent NeRF types).

FIGURE 9. A limitation of training on SmartPortraits: the back is never
visible in the dataset, leading to poor reconstructions or occluded regions
beyond the ears.

FIGURE 10. A limitation of the underlying architecture of Multi-NeuS: at
the second step of fitting, artifacts sometimes reappear in the occluded
regions (left column: left cheek and ‘‘yellow hair’’). Shown are the renders
of the control views (top and bottom) for Multi-NeuS fitted to one frontal
(left) and two ±45◦ (middle) views next to the ground truth (right). Here
we apply our best model on a validation scene from SmartPortraits.

Our approach has certain limitations. Many of them are
due to rather constrained training dataset. First, there are
only 103 training sequences. Although Multi-NeuS’ gener-
alization ability seems very good for such a small dataset,
there is still low diversity of hair styles, adornments, and
skin types. In addition, SmartPortraits only exhibits neutral
facial expressions, though in practice Multi-NeuS still seems
to reconstruct smiles reasonably well. Moreover, the camera
in the dataset only travels at most ±45◦ around the head
and therefore does not capture the back. As a result, our
model always fails to reconstruct the back because it has never
‘‘seen’’ it in training (Figure 7, bottom right; Figure 9). Thus,
an obvious remedy to improve the quality is to expand our
training set.

Our models might benet greatly from further improve-
ments and simplications of the underlying architecture.
While the rst step of tting often provides a good initializa-
tion for occluded regions, the second step sometimes worsens
these regions (Figure 8; Figure 10). This could be addressed
with ad-hoc inpainting procedures that exploit class-specic
symmetries, or more principled extensions of our method
such as learned gradient descent [53], [54]. However, the
fundamental problem might be hidden deeper in the network
architecture. This is additionally highlighted by the fact that
Multi-NeuS struggles to t training samples with the same
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accuracy as NeuS. A promising direction for future investi-
gation is therefore how to reduce the model complexity even
further (e.g. by using small learnable latent dictionaries) and
to allow for very large datasets and better generalization.

Finally, the models produced with our approach come
without rigging capability, and in the future it would be
interesting to extend our framework to address this.
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Project page: Data is available on-line at https://shrubb.
github.io/research/multi-neus/.
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